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Abstract

An approach to calculate the inverse of a square polyno-
mial matrix is suggested. The approach consists of two
similar algorithms: One calculates the determinant polyno-
mial and the other calculates the adjoint polynomial. The
algorithm to calculate the determinant polynomial gives the
coefficients of the polynomial in a recursive manner from
a recurrence formula. Similarly, the algorithm to calculate
the adjoint polynomial also gives the coefficient matrices
recursively from a similar recurrence formula. Together,
they give the inverse as a ratio of the adjoint polynomial
and the determinant polynomial.

Keywords: Adjoint, Cayley-Hamilton theorem, determi-
nant, Faddeev’s algorithm, inverse matrix.

1 Introduction

Modern control theory consists of a large part of matrix the-
ory. A control theorist is usually an expert in matrix theory,
a field of applied algebra. There are books written entirely
on matrix theory for control engineers. We can cite two
books: one by S. Barnett (1960) and the other by T. Kac-
zorek (2007). The reason for this fact is that matrices are
used to represent models of a control system. Since matri-
ces are used in control theory, their manipulation and calcu-
lation are of paramount importance for control engineers.
The most significant task is the calculation of the inverse
of a polynomial matrix. There are algorithms, discussed
in textbooks, for this task. We can cite the algorithms in
V. Kucera (1979) and T. Kaczorek (2007). These algo-
rithms are poor and inefficient in the sense that they cannot
be used for similar types of polynomial matrix. In this pa-
per, we will present algorithms to calculate the determinant
and adjoint polynomials of an inverse polynomial matrix.
The algorithms are an extension of a known algorithm by
K. Vu (1999) to calculate the characteristic coefficients of
a pencil. The paper is organized as follows. Section one
is the introduction section. The algorithms are discussed
in section two. In section three, some examples are given.
Section four concludes the discussion of the paper.

*A new-and-improved version of this paper can be found in the
Proceedings of the IEEE Multi-conference on Systems and Control on
September 3-5th, 2008 in San Antonio, TX under the title An Extension
of the Faddeev’s Algorithms.

2 The Inverse Polynomial

The inverse of a square nonsingular matrix is a square ma-
trix, which by premultiplying or postmultiplying with the
matrix gives an identity matrix. An inverse matrix can be
expressed as a ratio of the adjoint and determinant of the
matrix. A singular matrix has no inverse because its deter-
minant is zero; we cannot calculate its inverse. We, how-
ever, can always calculate its adjoint and determinant. It is,
therefore, always better to calculate the inverse of a square
polynomial matrix by calculating its adjoint and determi-
nant polynomials separately and obtain the inverse as a ra-
tio of these polynomials. In the following discussion, we
will present algorithms to calculate the adjoint and deter-
minant polynomials.

2.1 The Determinant Polynomial

To begin our discussion, we consider the following equa-
tion that is the determinant of a square matrix of dimension
n, viz
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The coefficients p;(C)’s are called the characteristic coef-

ficients of the matrix C. They are related to the zeros A;’s
of the polynomial f()) as
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The characteristic coefficients are given recursively as
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The coefficients p; (C?)’s are the Newton sums of the func-
tion f(\). Now, consider the case

C = A+uBi+p’By+--+u'B.. (1)



In this case, the function p, (C) is a polynomial of degree
n X r in the parameter p. Similarly, the characteristic co-
efficient p,,(C) is a polynomial of degree m x r in the
parameter u. Therefore, we can write
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From the last equation, we can obtain
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qm’k(C) = y TILL]C s k= 0, m Xr
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Some special values for these coefficients are given below

4m,0(C) Pm(A),
q0,0(C) = 1.
The coefficient g, ;(C) can be calculated recur-
sively, and the last equation serves as the initial condition
for the calculation. In the following discussion, we will

prove this fact.
From the relation of the characteristic coefficients
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By canceling and redistributing the factorials, we get
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The derivatives of the characteristic coefficient p; (C?) are
not difficult to obtain, but it is complicated to obtain a gen-
eral formula for them. We, therefore, will solve the prob-
lem as follows. By noting that we can interchange the order
of the operators: trace and derivative, we write

dp (C) dic
jldp Py Grdp

then obtain
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The derivatives of the matrix C? can be calculated re-
cursively. In the following discussion, we will present an
approach to calculate them numerically. We write

c' = Clc,
then differentiate both sides with respect to p to obtain
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To be able to calculate the derivatives numerically in a re-
cursive manner, we have to eliminate the jth derivative of
the matrix C*~2 on the right hand side of the above equa-
tion. We, therefore, will make repeated substitutions to re-
duce the power of the matrix C*~2 with matrices of lower
powers until we know the jth derivative of this matrix is
zero. This matrix can be an identity matrix, so we have

eventually

The [th derivative of the matrix C can be evaluated as
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By putting this derivative into the previous equation, we get
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Now, by setting 4 = 0, Eq. (3) becomes
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Therefore, by setting ;4 = 0 and dividing both sides of Eq.
(4) by j!, we can calculate the derivatives of the matrix C*
recursively as
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with the initial condition

0
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With the derivatives obtained, we can take their traces and
calculate, using Eq. (2), all the coefficients ¢,,, x(C)’s of
the characteristic coefficient p,, (C) recursively. The deter-
minant corresponds to the coefficient p,,(C).

2.2 The Adjoint Polynomial

An algorithm, called the Faddeev’s algorithm described in
D. Faddeev and I. Sominskii (1954), has been used as a
standard algorithm to calculate the determinant and adjoint
polynomials of a square polynomial matrix for control en-
gineers. The algorithm is discussed in W. Wolovich (1974)
and V. Faddeeva (1959), among others. The algorithm,
however, can only be used for the resolvent, [AI — C]*l,
of a constant matrix C. We, therefore, need an algorithm,
similar to the algorithm to calculate the determinant poly-
nomial, to calculate the adjoint polynomial of the pencil
given by (1). To derive the equations for the algorithm, we
use the relation between the characteristic coefficients of
a matrix and the matrix in the Cayley-Hamilton theorem.
From this theorem, we have

C"—p(C)C" -+ (=1)"p(C)T = 0.

From the above equation, we can write
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provided that p,, (C) is not zero, which means that the ma-
trix C has an inverse. We can write the last equation as

1
Pn(C)

1
= adj C,
pa(C) "

r(n—1)

1
= on(©) Z Dyt

[A+uBy+---+u'B,| " =

This means that we have
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To calculate the coefficient matrices D}, ’s for the ad-

joint polynomial, we proceed as follows. We write
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By differentiating both sides k times, dividing both sides
by k! and setting u = 0, we get
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In this case, we do not have to take the traces of the deriva-
tive matrices, and there is a slight difference in the coeffi-
cients ¢, 1 (C)’s of the two cases. Nonetheless, once we
have calculated all these coefficients and the derivative ma-
trices, a single program can calculate both the adjoint and
the determinant polynomials of the inverse of a polynomial
matrix.

3 Some Examples

We will consider a verification example first. Suppose that
we have the following matrices:

0.7812 —1.1878 0.3274 —0.9471
. 0.5690 —2.2023 0.2341 —0.3744
—0.8217 0.9863 0.0215 —1.1859 |’
—0.2656 —0.5186 —1.0039 —1.0559
1.4725 —1.1283 0.1286 —0.2624 ]
B, - 0.0557 —1.3493 0.6565 —1.2132
—1.2173 —-0.2611 —1.1678 —1.3194
| —0.0412 0.9535 —0.4606 0.9312 |
0.0112 —0.9898 1.1380 —0.3306 |
B, — —0.6451 1.3396 —0.6841 —0.8436
0.8057 0.2895 —1.2919 0.4978
| 0.2316 1.4789 —0.0729 1.4885 |
With the parameter ¢ = 0.9, we have
C = A+uB;+ "By,
2.1155 —3.0050 1.3650 —1.4511
_ 0.0966 —2.3316 0.2707 —2.1496
o —1.2647 0.9858 —2.0760 —1.9702
—0.1151 1.5374 —1.4776 0.9879

The adjoint matrix of the matrix C can be calculated di-
rectly from the above matrix, and it is obtained as

6.7558  —6.9290 29784  0.7866

ct - 3.5827 —10.8471 5.7842 —6.8049
0.8805 —6.6893 1.8359 —9.6012

—3.4716 6.0687 —5.9089  6.2071

pu=0

)



The adjoint algorithm gives the following matrices for the
adjoint polynomial, viz

3.4262 —2.9107 —2.1668  0.3923
D, — 1.1307 —1.9154 —0.2246 —0.0827
0.0170  1.2894  1.6667 —2.3444 |’
| —1.4334 04471 -0.9293 —0.3830 |
5.1952 —2.8108 —0.0282  1.9144 ]
D, — 2.3014 —3.8208  2.0678 —0.9044
1.0858  0.3998  1.9747 —8.9693 |’
| —3.8539  0.4194 —4.5510  0.1092 |
[ —2.4785 —2.4430 2.0131  5.2747 ]
D, — 0.2682 —0.6039  2.3843 —1.3142
—2.5755 —5.5819 —5.4978 —4.1973 |’
| 12567  0.2934 —1.6719  4.7609 |
2.6775  1.5003  3.2174  2.3165 |
D, — —0.5803 —1.7740  0.1633 —0.5132
—1.5882 —5.0169 —4.4797  6.0840 |’
| 25476 21033 2.7061  2.6865 |
5.8422  2.1378  5.1934 —5.0853 |
D, — 2.5456 —2.6364  2.6891 —3.1731
5.6557  0.3962  5.9156  2.0221 |’
| —4.0048  2.1808 —2.0852 —0.4903 |
[ —4.7791 —1.9663 —1.1173 —5.8981 ]
D, — —0.2550 —2.1538  1.2754 —3.2498
1.0004 —0.0831  4.0484 —1.9139 |’
| —0.0766  2.0738 —1.3298  1.7704 |
[ —4.3303 —1.5901 —2.9224 —0.8857 ]
D, — —1.7560 —1.3344 —0.7904 —0.8820
—2.2039 —0.6977 —0.3026 —0.7837
| 23105 1.5390  1.2252 —0.0876 |

It can be verified that

Ct = Dy+Dipu+Dyp®+ -+ Dgub.

Similarly, we can calculate the determinant from the matrix
C. We have

IC| = 9.7658.

The determinant algorithm gives the following coefficients:

= 1.3285,

Q4’0(C) = 2.6967, C]4’1(C) = 9.47817(]4’2(0
(C) = 2.4330,

)
Q473(C) = —4.4752, (J414(C) = 7‘2693,(]475 C)

Q476(C) = —5.50127Q477(C) = —39225, Q478(C) = —1.5827.

It can also be verified that

ICl = ¢40(C) + qs1(C)pp+ -+ + qas(C)p®.

Now, we will consider a control theory example. We
will obtain the unconstrained controller for a multivariable
stochastic regulating control system. The system is de-
scribed by a state space model as

yt+f+1 = C[I — AZﬁl]ilbut.

The triple (c, A, b) is called a realization of the system.
The system has a pure dead time of f intervals. The input
or manipulated variable vector is u;, and the output vari-
able vector is ¥;. This variable is the undisturbed output
variable. It is disturbed by a VARIMA time series given by
the following equation

ez g = 9 ag s

Then, we can write the disturbed output variable y; of the
control system at the time (¢ + f 4+ 1) as

Vi1 + g i,
= c[I- Az buy + (27 )Mz ag foa-

Yi+f+1

The purpose of the controller is to produce minimum vari-
ance for y;.

To obtain the controller, we will reason as follows. At
the time ¢ when yy is available, we want to move the control
variable u; such that the output variable y;4 r11 = 0. This
requires the knowledge of n, y1. At the time ¢, however,
the variable n,y s is not available, so we must replace
it by its minimum variance predictor. We must obtain the
(f + 1) steps ahead forecast for n;. This can be done as
follows.

From the equation of the VARIMA time series, we
have

e = @z )T a4,
= 7)|ﬂ(z_1)at+f+1,
—1
_ z e
= [Pz 1)+|;EZ_1;|Z T Nagypy1,

-1
= w(z_l)at+f+1 + |:;((Zzlgat.

By taking the conditional expectation at the time ¢, we ob-
tain

. (=
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The controller can be obtained by setting
cI—Az"'"'bu, = —Ryppi)e
—1
z
_ _Ljat,
lp(z7Y)I

To obtain the controller in terms of the input and output
variables, we have to replace the white noise a; by the out-
put variable y;. This can be done by observing that un-
der the minimum variance control law, the output variable
equals the prediction error, i.e. we have

ye = ¥z Hay.



Therefore, we have

ag = d’(zil)ilyta

The desired controller is

(=" (=)l - Az"1"bu, =
— = Az oy (e (=) Ty

In the above equation, the polynomials [I — Az~!]* and
T — Az71| can be obtained by the Faddeev’s algorithm;
the other polynomials, however, must be obtained by the
algorithms in this paper.

4 Conclusion

In this paper, we have presented algorithms to calculate the
adjoint and determinant polynomials of a square polyno-
mial matrix. The algorithms are sufficient and elegant, and
they can be extended further for matrices with polynomi-
als in two or more parameters. With such a strength, the
algorithms should be standard algorithms, used in control
applications, for the calculation of the adjoint and determi-
nant polynomials.
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